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513Corg chemostratigraphy of the Permian-Triassic boundary in the
Maitai Group, New Zealand: evidence for high-latitudinal methane release
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Abstract Carbon isotopic studies from marine organic
matter of the Permian-Triassic Maitai Group, New Zealand,
reveal a significant 513Corg shift toward more negative values
within the Little Ben Sandstone Formation. These isotopic
data chemostratigraphically define the previously debated
position of the Permian-Triassic boundary in the Maitai
Group. The Permian-Triassic record of the Maitai Group is
also important because of its high paleolatitudinal setting
and the deposition at intermediate depths in the ocean
(c. 400 m) within a volcanic arc-related basin. Marine
Permian-Triassic strata deposited at water depths deeper
than shelf areas are rare. High latitude Permian-Triassic
boundary sections document a significantly larger isotopic
offset across the boundary compared with lower latitude
settings.

Carbon isotopic values decrease rapidly by an average
of 7%o from homogeneous values (x -25%o) in the Tramway
and lower Little Ben Sandstone Formation to highly
lluctuating and very depleted values (x -32%o) within the
Little Ben Sandstone Formation. The lowermost Big Ben
and Tramway Formations are considered to be Permian in
age, based on their homogeneous and comparably heavier
carbon isotopic values and supported by fossil atomo-
desmatinid bivalves. Based on the distinct 513Corg excursion
toward negative values and the concurrent onset of strong
isotopic fluctuations, the Permian-Triassic boundary is
placed in the lower half of the Little Ben Sandstone
Formation.
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Very depleted 813C values in the Little Ben Sandstone
Formation of-38%o indicate a contribution from isotopically
light methane. A possible methane source is clathrates,
released by large submarine slides or warming-induced
melting of permafrost. The Little Ben Sandstone Formation
has been interpreted as a massive event deposit from a
submarine slide (Landis 1980). This hypothesised methane
release could have been in part responsible for the larger
Permian-Triassic isotopic shift in high latitudes compared
with low latitudes because large volumes of clathrates are
trapped in continental shelves and high-latitude permafrost.

Keywords Permian-Triassic boundary; Maitai Group;
stable carbon isotopes; methane

INTRODUCTION

Marine and terrestrial life experienced the most severe crisis
in Earth's history during the Permian-Triassic extinction,
now dated at 251.4 + 0.3 Ma (Bowring et al. 1998). An
estimated 93-95% of all marine species (Raup 1979) and
c. 70% of all vertebrate families (King 1991; Maxwell 1992)
did not survive this largest of all extinction events. This
important event in geologic history, which was crucial for
the structure and composition of post-Paleozoic marine
communities, could not be identified previously in the
Paleozoic-Mesozoic Maitai terrane of New Zealand.

There has been a long history of debate on the placement
of the Permian-Triassic boundary in the Maitai Group of
New Zealand. In the 1940s the "Maitai problem" was
regarded as the single-most important problem in New
Zealand geology (Harrington 1983). Earlier accounts
regarded the Maitai Group as entirely Permian in age and
placed the Permian-Triassic boundary between the Maitai
Group and the overlying Murihiku Supergroup (Waterhouse
1967, 1973b, 1987; Johnston & Stevens 1978; Landis 1980;
Pillai et al. 1991; Kimbrough et al. 1992). The Permian-
Triassic boundary is now thought to occur within the Maitai
Group, between the Tramway and Greville Formations
(Dickins & Campbell 1992; Owen 1991, 1992). An exact
position of the Permian-Triassic boundary within this
sequence has been hampered by poor fossil preservation,
by the occurrence of endemic species or long-ranging benthic
forms, and by the lack of good biostratigraphic age control
(Pillai et al. 1991; Dickins & Campbell 1992; Campbell
1996).

Stable carbon isotope stratigraphy can be used for
determination of the Permian-Triassic boundary because of
the distinct, worldwide negative 813C excursion. This
excursion has been found in marine limestones (Holser &
Magaritz 1987; Baud et al. 1989), marine organic carbon
(Magaritz et al. 1992; Wang et al. 1994; Krull 1998; Isozaki
1997), terrestrial organic carbon (Morante 1996; Krull 1998;
Retallack & Krull 1999), terrestrial tooth apatite (Thackeray
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Fig. 1 Regional location map
for the Maitai Group, South
Island, New Zealand, showing the
distribution of the Permian-
Triassic Maitai Group (black) and
correlative strata (dotted). Maitai
outcrops occur in the Nelsois
Regional Syncline and, offset b\
480 km along the Alpine Fault, in
the Key Summit Regiona
Syncline (modified from Landi:
1980; Owen 1991).

etal. 1990), and pedogenic carbonate (MacLeod etal. 1997).
In this study, we present for the first time detailed
chemostratigraphic data from the Permian-Triassic 8l3Corg

marine record in New Zealand, showing a distinct 813C
excursion toward more negative values within the Little Ben
Sandstone Formation. Based on this negative carbon isotopic
excursion, the boundary can now be placed shortly above
the formational contact between the Tramway and Little Ben
Sandstone Formations of the Maitai Group.

GEOLOGICAL SETTING

The Permian-Triassic Maitai Group is exposed along a
narrow fold and thrust belt extending through the South
Island of New Zealand from eastern Nelson, to western
Southland, to south Otago (Fig. 1). It is composed of a thick
sequence of volcanic arc-derived, weakly metamorphosed
marine sediments which are in contact with the well-dated
Dun Mountain Ophiolite Belt (Coombs et al. 1976;
Kimbrough et al. 1992). Together they constitute the fault-
bounded Dun Mountain-Maitai Terrane (Bishop et al. 1985).

The Maitai Group consists of 16 formations of which 3
formations (Tramway, Little Ben Sandstone, and Greville)
bracket the Permian-Triassic boundary. Stratigraphy and
isotopic data of these units will be discussed in greater detail.

LOCALITY AND METHODS

Strata of the Maitai Group are exposed in the Nelson
Regional Syncline as steeply dipping beds, situated along
the Left Branch of the Wairoa River (Landis 1980). Here, a
complete and detailed section of the Tramway, Little Ben
Sandstone, and Greville Formations was sampled for carbon
isotopic analysis and petrographic studies (Fig. 2).

In preparation for isotopic analysis, samples were
powdered and 1 g of sample was treated for 30 min with
100 ml hot (8O-9O°C), 0.5 A/HC1 to remove all carbonates
and other acid-soluble minerals. Acid-insoluble residues
were washed until neutral (pH 6-7) and oven-dried for at
least 12 h. Approximately 0.1 g of the dried residue was
accurately weighed (to fourth decimal place) and loaded into
9 mm quartz tubes with 1 g CuO and 2 inch (50 mm) silver
wire each. The tubes were evacuated, sealed, and combusted
at 860°C for 6 h and then slowly cooled to 25°C over 20 h
CO2 was collected by cryogenic distillation and analysed
for 8'3C at the Nuclide Associates 6-60 mass spectrometer
in the Institute of Geological & Nuclear Sciences, Lower
Hutt, New Zealand. Analytical precision was judged on the
basis of 11 replicates of a graphite standard (NBS-21)
analysed over a period of several months (x -27.99%o, ±SD
0.12%o). Replicates of this standard never differed by more
than 0.3%o. The individual mass spectrometry errors are:
<0.1 %o. Total organic carbon (TOC) content was determined
by measuring the volume (micromol) of CO2 and converting
it to total amount of carbon (Boutton 1991). Standard error
for TOC determination was <0.01. Isotope results are
reported in the conventional notation as per mil deviatior;
from the PDB standard with analytical error of 0.1%o.

DIAGENESIS AND THERMAL ALTERATION

The Permian-Triassic Maitai sequence in the Nelson area,
has been affected by low-grade metamorphism during n
Mesozoic folding event that formed the Nelson Regiona!
Syncline (Landis 1980). Abundant authigenic mineral phases
include epidote, actinolite, pumpellyite, chlorite, ana
lawsonite, indicating that metamorphic conditions were at,
or below, greenschist facies (Landis 1980).
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Fig. 2 Locality map for the
outcrop area of the lower Maitai
Group along the Left Branch of
the Wairoa River (arrow), show-
irg steeply dipping strata of the
Tramway, Little Ben Sandstone,
and Greville Formations (modi-
fied from Waterhouse 1959).

Stable carbon isotopes of organic matter are robust with
respect to post-burial fractionation processes during burial
diagenesis (Hayes et al. 1983). At thermal conditions at or
below greenschist facies, diagenetic alteration of organic
carbon isotopes is negligible (Hoefs & Fry 1976; Deines
1980; Redding et al. 1980; Peters et al. 1981; Hayes et al.
1983; Strauss et al. 1992).

To ensure that our isotopic data are not the result of
contamination or thermally driven loss of hydrocarbons
during diagenesis, we cross-plotted total organic carbon
content against 8I3C values for each formation (Fig. 3). No
significant statistical correlation was recognised between the
amount of TOC and carbon isotopic composition. From these
data, we conclude that our 8l3Corg values can be interpreted
as an original isotopic signature and that no significant
thermal alteration has affected this signature (Wang et al.
1994).

FORMATIONS AND AGE DETERMINATION

Tramway Formation
The Tramway Formation consists of bedded, quartzo-
feldspathic and lithic, greenish grey sandstone, commonly
interbedded with dark-grey siltstone and carbonaceous
claystone (Fig. 4). Fragments of disintegrated, prismatic,
calcitic shells of atomodesmatinid bivalves, and trace fossils,

are common. Graded bedding, sole markings, and flame
structures are abundant in the thinly bedded lower part of
the Tramway Formation. In the upper, thickly bedded part
there are large (up to 10 mm) pyrite euhedra and complete
Atomodesma valves (Landis 1980). Based on evidence from
bryozoans and atomodesmatinid bivalves, a Late Permian
(Tatarian) age has been suggested for the Tramway
Formation (Waterhouse 1976, 1987; Stratford 1990).

Little Ben Sandstone
Little Ben Sandstone comprises massive to thinly bedded
green volcanogenic sandstone, siltstone, and mudstone, as
well as local conglomerate units and has only rare
(redeposited?) atomodesmatinids (Fig. 4) (Waterhouse 1964;
Landis 1980). Its basal contact with the Tramway Formation
is gradational, as dark grey claystone grades into bedded
green sandstone of the Little Ben Sandstone Formation. This
formation is largely devoid of fossils, and its poorly
fossiliferous nature has been used as a criterion for its
stratigraphic definition (Waterhouse 1964; Landis 1980). The
Little Ben Sandstone Formation has a much higher basaltic-
andesitic, volcanogenic, siliciclastic component compared
to the quartz-rich Tramway Formation (Landis 1980).
Dominance of poorly sorted sediment and only modest
occurrence of grading and lamination, load casts, flame
structures, and rip-up clasts suggest rapid mass emplacement
(Landis 1980). Only plant scraps without biostratigraphic



24 New Zealand Journal of Geology and Geophysics, 2000, Vol. 43

-22-

-26-

g -30H
Q.

f
P -34H

-38-

O O

O8
O

o° o

0.1 0.2

TOC '"'

Greville
Formation

Little Ben
Sandstone

Tramway
Formation

0.3 0.4

Fig. 3 Cross-plot of 8l3COIg am:
TOC contents shows tic
significant correlation betweei
isotopic signature and toXE
organic carbon conten;
Correlation coefficient R2

Tramway Formation R2 = 0.16
Little Ben Sandstone R2 = 0.0d
Greville Formation R2 = 0.02; a>'.
formations combined R2 = 0.2.

significance, and fragments of (redeposited?) bivalves, have
been found in the Little Ben Sandstone Formation; thus, the
age of this formation is uncertain (Landis 1980).

Greville Formation
The Greville Formation consists of green and grey, laminated
siltstone, sandstone, and claystone (Fig. 4). Its lower contact
with the Little Ben Sandstone is not exposed in the section
we studied but has been reported as gradational and is placed
at the transition from thick, bedded sandstone to laminated
clay and sandstone sequences (Owen 1991, 1992). The age
of the Greville Formation is debated because of its low fossil
content and preservation. The ammonoid Durvilleoceras
woodmani has been found at several localities in the Greville
Formation (Waterhouse 1973a), but its age is still
controversial. Waterhouse (1973a, 1979, 1987) claimed a
Late Permian age for D. woodmani, and later suggested a
middle Triassic (Anisian) age (Waterhouse 1993). Based on
the similarity of D. woodmani to Early Triassic
Flemingitidae, Furnish et al. (1976) suggested a mid-Early
Triassic (Dienerian-Smithian) age. Johnston & Stevens
(1978) described two ammonoids {lEpisagiceras aff.
noetlingi and Durvilleoceras woodmani) from the Greville
Formation and considered them Early Triassic. A
Griesbachian (earliest Triassic) age is suggested, based on
another ammonoid (collected by B. Runnegar) from Greville
Formation that is comparable with Hypophiceras sp. (Owen
1991). Campbell (1996) also attributes an Induan (Dienerian)
age to the Maitai Greville Formation, based on the
ammonoid fauna including Durvilleoceras, Episgeceras, and
an undescribed xenodiscid. Thus, a range from earliest to
late Early Triassic is considered most likely (Owen 1991,
1992).

RESULTS

Stable carbon isotopic values and total organic carbon
content of the Tramway, Little Ben Sandstone, and Greville
Formations are shown in Fig. 4 and reported in Table 1.

Carbon isotopic values of the Tramway Formation average
-24.94%o (±SD 1.3) with average total organic carbon (TOC •
contents of 0.25%. The contact between the Little Bei
Sandstone and Tramway Formation is gradational. The lower
part of the Little Ben Sandstone Formation (116-150m) does
not show significantly different 813C (x -24.1%O, ±SD 0.6
and TOC (x 0.13%) values compared to those of tht
Tramway Formation (Fig. 4). The upper part of the Little
Ben Sandstone is characterised by an abrupt 8%o shift towar
more l3C-depleted values (x -32.1%o), high isotopL
variability (±SD 4.0), and low TOC contents (x 0.07%). The
contact between the Little Ben Sandstone and the overlyint
Greville Formation is also gradational. Compared with the
Little Ben Sandstone, S13C values of the Greville Formation
have less isotopic deviation and average -29%o (±SD 1.3)
3%o less 13C-depleted than those of the Little Ben Sandstone'
TOC contents of Greville Formation are comparably higher
and average 0.18%.

INTERPRETATION

The Permian-Triassic boundary in the type section in Chine
at Meishan has been dated at 251.4 ± 0.3 Ma (Bowring t<
al. 1998). A carbon isotopic excursion towards lower value?
is closely associated with the dated boundary event. The
distinct 813Corg excursion within the Little Ben Sandstoti;
from 813Corg values typical for recent marine organisms aac
marine sedimentary rocks (Fig. 5) toward strongly 13C
depleted values is similar to the isotopic record of othe:
Permian-Triassic boundary sections. This distinct negativ:
carbon isotopic excursion has been used as a chemo
stratigraphic marker to identify the Permian-Triassi;
boundary in marine and terrestrial environments elsewhere
(e.g., Holser et al. (Austria) 1989; Xu & Yan (China) 1993
Kajiwara et al. (Japan) 1994; Wang et al. (Canada) 1994
Morante (Australia) 1996; Krull (Antarctica) 1998; Bowrin.;:
et al. (China) 1998; Wignall et al. (West Spitsbergen) 1998}
However, similar negative 813C excursions have bee:
reported during the Late Permian at the Capitan
Wuchaipingian boundary (Erwin 1994; Grotzinger & Kno! 1
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Fig. 4 Stratigraphic section of
the Lower Maitai Group showing
6 l3Corg values and TOC contents
for the Tramway, Little Ben Sand-
stone, and Greville Formations. A
distinct excursion toward 13C-
depleted and highly flucutating
8 Corg values occurs at or above
the contact between the Tramway
Formation and Little Ben Sand-
stone, which marks the Permian-
Triassic. Isotopic values return
toward less 13C-depleted values in
the Greville Formation.
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1995). The biostratigraphic record of the Tramway
Formation does not allow for resolution of the Permian to
stage level, and therefore the possibility exists that the earlier
excursion in our section could correspond to a Late
(Capitanian-Wuchiapingian) but not latest Permian isotopic
event. This possibility is considered unlikely, though, for
the following reasons. First, the Capitanian-Wuchiapingian
negative isotopic event is closely preceded by a distinct
positive isotopic excursion of 4%o or more within the late
Tatarian (Grotzinger & Knoll 1995). Isotopic values enriched
in 13C could not be detected in the Little Ben Sandstone or
Tramway Formation. Second, as reported in other Permian-
Triassic boundary sections, it is common to not have only

one isotopic "spike" but several (Baud et al. 1989;
Oberhansli et al. 1989; Chen et al. 1991; Xu & Yan 1993).
Furthermore, it is unlikely that the interval between the two
distinct isotopic excursions in the mass-emplaced Little Ben
Sandstone corresponds to 10 m.y., the amount of time
required if both the Capitanian-Wuchiapingian and
Permian-Triassic isotopic events were recorded. Therefore,
we interpret the first negative 513C excursion in the Little
Ben Sandstone as the chemostratigraphic marker for the
Permian-Triassic boundary. This placement suggests a Late
Permian age for the lower Little Ben Sandstone and an Early
Triassic age for the upper Little Ben Sandstone. Remarkable
in this upper part of the formation are the extremely negative
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Table 1 Stable carbon isotopic values and total organic carbon
content for the Tramway (W3-W22), Little Ben Sandstone
(R21677/1-W31), and Greville Formations (W32-W45) of the
Permian-Triassic Maitai Group, New Zealand. Sample numbers
with the + symbol indicate duplicates.

Sample
no.

W3
W4
W5
W6
W7
W8
W9
W10
Wll
W12
W13
W14
W15
W16
W17
W17+
W18
W19
W19+
W20
W21
R21677/10
W22
R24677/1
R21677/2
R21677/9
R21677/3
R21677/5
R21677/4
R21677/6
R21677/7
W23
W24
W24+
W25
W26
W26+
R21677/8
W27
W28
W2
W29
W30
W30+
W31
W31 +
W32
W32+
W33
W34
W35
W36
W37
W38
W39
W40
W41
W42
W43
W44
W45

Meter
level

3.52
8.35
12.47
17.65
21.30
25.50
30.20
33.40
38.40
41.10
51.20
55.50
60.00
63.00
67.30
67.30
77.60
81.20
81.20
86.30
89.70
95.20
95.30
97.00
99.30
100.50
101.70
102.90
104.00
110.90
120.30
119.60
123.50
123.50
126.10
127.60
127.60
129.13
130.00
136.00
138.70
139.30
143.10
143.10
154.20
154.20
158.40
158.40
162.70
164.60
187.60
189.00
190.50
194.40
253.30
256.10
263.30
264.50
269.20
271.50
273.80

8 1 3 C o r g

(%o)

-25.37
-25.30
-24.49
-21.78
-24.30
-24.50
-25.40
-22.48
-25.00
-25.10
-25.10
-26.00
-25.30
-26.90
-25.10
-24.89
-24.61
-26.20
-25.43
-22.80
-25.30
-24.20
-27.30
-24.20
-23.80
-24.50
-23.00
-24.70
-24.60
-24.70
-23.20
37.00

-38.20
-36.40
-29.50
-28.66
-28.15
-29.00
-30.30
-29.60
-28.20
-29.40
-31.49
-30.26
-36.90
-38.73
-32.30
-28.62
-30.02
-29.90
-29.71
-29.68
-28.40
-29.30
-27.30
-28.17
-30.50
-27.55
-28.04
-28.82
-30.00

TOC content
(%)

0.15
0.20
0.31
0.32
0.32
0.25
0.23
0.24
0.27
0.24
0.29
0.30
0.27
0.31
0.21
0.21
0.24
0.26
0.26
0.27
0.22
0.14
0.17
0.16
0.21
0.19
0.03
0.15
0.07
0.22
0.04
0.08
0.09
0.09
0.07
0.05
0.05
0.09
0.04
0.04
0.05
0.10
0.03
0.03
0.11
0.11
0.16
0.16
0.27
0.18
0.09
0.13
0.20
0.36
0.16
0.21
0.14
0.18
0.16
0.25
0.09

8I3C values of organic matter as well as its high isotopi
variability and low TOC content. These chemostratigraplii
features are comparable with other Early Triassic sedimetv -
of high paleolatitudinal settings. By comparison, Permian
Triassic boundary sections in lower paleolatitudes show less
pronounced isotopic shifts in organic matter (Baud et ai
1989; Holser et al. 1989) (Fig. 6). Stable carbon isotopi,
values as negative as -37%o are rare in modern and ancier;
marine sediments. 813C values in this range are usuall
associated with carbon derived from isotopically ligh
methane sources (Hayes et al. 1987; Freeman et al. 1990
Hayes 1994). The trend toward more I3C-depleted value
in high compared to lower paleolatitudes may suggest releas<
from methane sources in high latitudes.

Stable carbon isotopic values return from highly 13C
depleted values in the Little Ben Sandstone to less I3C
depleted values in the Greville Formation. Compared wit!
pre-boundary isotopic values in the Tramway Formation
813C values in the Greville Formation are on average 4%,
lower. These comparably low isotopic values in the Greville
Formation are similar to those of Early Triassic intervals o r

Permian-Triassic boundary sections elsewhere. These '3C
depleted values have been documented in some sections a
lasting throughout the Scythian (Baud et al. 1989; Holser e
al. 1989; Magaritz 1989).

The cause of this global 813C shift across the Permian
Triassic boundary is still not resolved. Traditiona
interpretations argue for increased erosion and oxidation o
previously buried organic carbon from coal and marine shal.
deposits during the Late Permian regression (Holser <*<
Magaritz 1987; Oberhansli et al. 1989). It is not certair
though, whether this scenario could explain a 4%o shift i:
the whole ocean as 6500-8400 Gt of organic carbon would
have been required to produce such a shift (Erwin 1993)—
an amount that exceeds the total reservoir of oil, gas, ane
coal (total of 5000 Gt; Erwin 1993). Other interpretation^
include large input of mantle-derived CO2 from the eruption
of the Siberian traps (Erwin 1993,1994; Renne et al. 1995)
Given the isotopic value of volcanic CO2 (-5%o; Erwin
1993), the CO2 released from the Siberian traps could no-
have contributed significantly to the isotopic excursion
(Gruszczynski et al. 1989; Erwin 1993). Wang et al. (1994
proposed a collapse of surface-water primary productivity
analogous to the "Strangelove" ocean of the Cretaceous-
Tertiary (K/T) boundary (Hsu & McKenzie 1990; Kumj-
1991). This scenario assumes that due to the decline oi
photosynthetic activity in the surface ocean, less 12C i-
photosynthetically fixed and buried. As a result, the 81J(
surface to deep-ocean gradient would be reduced or even
reversed when respiration dominated over photosynthesis
Wignall et al. (1995) and Wignall & Twitchett (1996) argued
that such a productivity collapse and negative 813C excursion
could be explained with the spread of highly toxic, anoxii
waters onto shelf environments. D'Hondt (1995) challenged
these arguments, reasoning that oceanic phytoplankton
would recover much quicker than anticipated in these
scenarios. Knoll et al. (1996) suggested that overturn ol
anoxic deep oceans released isotopically light deep-oceanic
CO2, resulting in noxious hypercapnia and widespread
marine extinction. Isozaki (1997) opposed this argument,
reasoning that the superanoxia event and accompanied 813C
excursion must have been the result of a massive net impor!
of organic carbon from sources other than the ocean. Thus



Krull et al.—Carbon isotopes from the P/T Maitai Group 27

Fig. 5 Carbon isotopic com-
position of photosynthetically
fixed carbon from modern
systems (algae, aquatic plants,
marine plants exclusive of plank-
ton, lacustrine plants exclusive of
plankton, marine plankton) and
from the geologic record
(kerogen in marine sediments and
metasediments) (modified from
Deines 1980).

Marine Plankton

O
c
a>

Kerogen in marine sediments
and metasediments

Lacustrine Plants
exclusive of Plankton

Marine Plants
exclusive of Plankton

far, other interpretations such as meteorite impact (Retallack
et al. 1998) and methane release (Erwin 1993,1994; Bowring
et al. 1998) were lacking supporting data.

DISCUSSION

Depositional environment
Most records of Permian-Triassic boundary sections are
from shallow-water shelf sediments off the coast of Pangea.
Deposits exceeding depths of 200 m are rare in the geologic
record due to subduction of most pelagic sediments older
than the Jurassic. Exceptions are rare and deep-marine
sections have been reported from Canada (Wang et al. 1994)
and southwest Japan (Kajiwara et al. 1994; Isozaki 1997).
Marine sediments of the Permian-Triassic Maitai formations
have been deposited as turbidite and submarine fan deposits
in mid-upper fan and slope environments in a volcanic-arc
related basin (Landis 1980; Owen 1991, 1992). The
preservation of probably latest Permian marine sediments
deposited on continental slope environments (water depths
>400 m) contributes essential data for the carbon isotopic
record across the Permian-Triassic boundary. The finding
of carbon isotopic excursion not only in shallow but also in
marine environments of moderate depths opposes the theory
that carbon isotopic excursion can be explained with a
collapse of paleo-productivity as suggested by Wang et al.
(1994). In this scenario, only the surface waters should
record an isotopic excursion, analogous to the Strangelove
ocean proposed by Hsu & McKenzie (1990). An isotopic
shift toward ' 3C-depleted values in the whole ocean, possibly
for millions of years (Holser & Magaritz 1987), cannot be
explained by surface water, primary productivity collapse
alone.

Furthermore, findings of organic-rich sediments in the
Tramway, Little Ben Sandstone, and Greville Formations

question the worldwide oceanic anoxia event as proposed
by Kajiwara et al. (1994), Knoll et al. (1996), and Isozaki
(1997). These authors argue for a global marine "super-
anoxia" event based on isotopic values of 8'3C and 834S in
conjunction with occurrences of organic-rich, deep-marine
chert deposits associated with the Permian-Triassic
boundary in southwest Japan. Geologic evidence for such a
major anoxia event should be ubiquitous in boundary
sections of similar depositional environment. Therefore,
other marine settings below the photic zone should expose
a similar organic-rich interval in association with the isotopic
excursion. In the intermediate to deep marine Permian-
Triassic interval of the Maitai Group, organic-rich shales
occur throughout the Tramway and Greville Formations and
are also found in few places in the Little Ben Sandstone
(Fig. 4) (Landis 1980; Owen 1991, 1992). However, no
distinct increase in the occurrence of organic-rich shales or
increase in TOC content, respectively, could be found in
association with the carbon isotopic excursion within the
Little Ben Sandstone. On the contrary, TOC contents
decrease from the Tramway Formation to the Little Ben
Sandstone (Fig. 3). This decrease in TOC has been observed
in other boundary sections as well (e.g., Oberhansli et al.
1989; Morante 1996). Thus, the occurrence of a widespread
"super-anoxia" event is not supported by the sedimentologic
record from our section in New Zealand. Consequently, the
TOC-rich interval associated with the isotopic excursion in
the Japanese Permian-Triassic section might be a local,
basin-related feature and not a global event.

Highly depleted 8I3C values: modern clathrate
deposits
Anomalously depleted 813C values of organic matter (-35%o
and lower) have been associated with the presence of
isotopically light methane (Schidlowski 1987). Today, the
largest methane reservoirs are in clathrate deposits.
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marine environments. Permian-
Triassic 5'3C boundary excursions
are commonly larger in high
compared to low latitudes. An
exception is South China, located
at equatorial paleolatitudes and
showing large isotopic excursions
Paleolatitudes from Erwin (1993;
and Scotese (1994). Abbrevi-
ations: AR = Armenia (Baud et al
1989), AT = Austria (Holser et al
1989), AU = Australia (Gorter et
al. 1995; Morante 1996), EG =
East Greenland (Oberhansli et al
1989), NI = North Iran (Baud et
al. 1989), NWI = Northwest Irar
(Holser & Magaritz 1987), NZ =
New Zealand (this paper), PK =
Pakistan (Baud et al. 1989), SC =
South China (Chen et al. 1991; Xu
& Zheng 1993), WSG = West
Spitzbergen (Gruszczyhski et al.
1989), WSW = West Spitzbergen
(Wignall et al. 1998), WY = West
Yugoslavia (Baud et al. 1989).

Clathrates (methane hydrates) are crystalline, ice-like solids
formed of water and methane gas. They form under specific
pressure-temperature conditions in regions of permafrost
(offshore and onshore) and beneath the sea in outer
continental margins, where water depths exceed 300-500 m
(Kvenvolden 1988a, b; Booth et al. 1998; Haq 1998). Today,
clathrates are common in high-latitude regions where
permafrost is ubiquitous, such as areas of the Siberian
platform, northern Russia, in the North American Arctic,
and in the western Ross Sea of Antarctica. In mid and low
latitudes, methane clathrates occur mostly in outer
continental margins such as in the western Central American
trench, the Gulf of Mexico, the Nankai Trough off Japan,
and the Timor Trough off Australia (Kvenvolden 1988b).

Highly depleted 8I3C values: ancient clathrates
Global isotopic excursions toward' 3C-depleted values, other
than the Permian-Triassic boundary, have been associated
previously with destabilisation of clathrate deposits and
submarine slides. Paull et al. (1996), Rothwell et al. (1998),
and Nisbet & Piper (1998) document large-scale submarine
slides and associated isotopic excursions toward 13C-
depleted values in late Quaternary sediments, which they
interpret as catastrophic methane release after slope failure.
These slumps may have been triggered by lowering of
hydrostatic pressure due to sea-level low-stand during glacial
maxima, resulting in destabilisation of methane clathrates.
As hydrostatic pressure decreases to a critical level,
clathrates start to dissociate at the base of the gas-hydrate
stability zone. Hydrate cements are removed from pore
space, which is subsequently filled with gas bubbles and
water. This replacement dramatically decreases the confining
pressure and weakens the sediment, creating a basal layer
of weakness (Dickens et al. 1995; Haq 1998). At this point,
a submarine slide and associated methane release may be
initiated along this layer of weakness by a small earthquake,

sudden sediment input, or large storms (Nisbet & Piper
1998). Estimates of methane release from individual
submarine slides are in the order of 1 Gt, but particularly
large slides as the Storegga slide 30 000-50 000 yr ago could
have released 5 Gt or more of methane (Nisbet & Piper
1998).

Although the above-mentioned volume of methane is not
enough to produce an immediate global isotopic excursion,
it would add a substantial amount of greenhouse gases (CH4
and CO2) to the atmosphere, possibly resulting in warmer
global temperatures. This global warming could have
initiated a positive feedback cycle due to warming of ocean
temperatures, causing further destabilisation and release of
clathrates. Following this scenario, several "clathrate-burps"
could have provided the volume of isotopically depleted
methane carbon to the atmosphere (>1 X 1018 g carbon;
Dickens et al. 1995) to produce a shift in die global isotopic
signature. This mechanism has been proposed for the late
Pleistocene (20 000 yr ago) after emplacement of a mega-
turbidite and associated methane release (Rothwell et al.
1998).

Climatic warming associated with the release of gas
hydrates has been suggested as the cause of global negative
813C shifts during the latest Paleocene (Dickens et al. 1995,
1997; Bains et al. 1999), early Eocene (Sloan et al. 1992),
and mid Cretaceous (Jahren 1998). During the Paleogene,
increased slump frequency has been documented during four
periods, at the Cretaceous-Tertiary boundary, the Paleocene-
Eocene boundary, the top of the lower Eocene, and in the
middle Eocene (Mountain & Tucholke 1985; Mountain
1987). These slump events have been suggested to be
possibly triggered by gas-hydrate destabilisation during sea-
level low-stand (Haq 1998). Therefore, sedimentological and
isotopic features indicating possible slump-related gas
hydrate releases have been documented in the geologic
record previously.
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Based on sedimentary structures, petrography, chemistry,
and tectonic setting, the depositional environment of the
Little Ben Sandstone Formation has been interpreted as
mass-emplaced submarine slide deposits and coalescing
submarine fans (Landis 1980).The lithology of the formation
is characterised by strongly indurated, greenish, volcano-
genie sandstone and siltstone and interbedded mudstone
(Landis 1980). These sediments were mostly derived from
the basaltic-andesitic Alabaster Group, an early-middle
Permian volcanic sequence which flanks the western margin
of the New Zealand Geosyncline (Landis 1980). Evidence
for increased concentrations of methane during the
deposition of the Little Ben Sandstone is provided by very
13C-depleted (-37%o) isotopic values in association with
mass-emplaced submarine slide deposits (Fig. 4). Such
recurrent destabilisation of shelf deposits could have resulted
in a critical decrease in lithostatic pressure and degeneration
of the gas-hydrate stability zone.

Although field and isotopic evidence from our study
site in New Zealand can account only for a localised effect
of a proposed clathrate release, stable carbon isotopic
studies from other high-latitude areas show similar
depleted values.

High-latitudinal settings and clathrate deposits
During the Permian-Triassic boundary, the Maitai Group was
situated at high latitudes between 50 and 60°S (Waterhouse
1973b). Comparison of carbon isotopic data from high versus
low latitude settings shows a significant difference in
magnitude of the isotopic excursion (Fig. 6),.Results from
high-latitudinal marine settings in the Northern Hemisphere
in West Spitzbergen (Gruszczynski et al. 1989; Wignall et
al. 1998) and Greenland (Oberhansli et al. 1989) and in the
Southern Hemisphere in Australia (Morante et al. 1994;
Gorter et al. 1995; Morante 1996) and in New Zealand (this
paper) document isotopic excursions of up to 9%o.
Comparable sections in low and mid latitudes in the Austrian
Alps, the Dolomites, Transcaucasia, and Iran show smaller
isotopic excursions on the order of 3%o (Baud et al. 1989;
Holser et al. 1987, 1989; Magaritz et al. 1992; Wang et al.
1994). A notable exception are equatorial Permian-Triassic
sections in South China, where Chen et al. (1991) and Xu
& Yan (1993) report over 8%o excursions shortly above the
paleontologically defined Permian-Triassic boundary
(Fig. 6). During the latest Permian and earliest Triassic,
South China was an isolated terrane in the eastern Tethys,
and its paleolatitudinal position is much less constrained
compared to other localities (Erwin 1993). Permian-Triassic
boundary sections in South China occur in shallow
epicontinental marine facies and even include lagoonal and
supratidal facies (Erwin 1993). Close proximity to land may
also explain this anomaly because terrestrial boundary
sections generally show a greater isotopic shift across the
boundary compared with marine sections (Morante 1996;
Krull et al. 1998). Thus, in addition to the paleolatitudinal
uncertainty, the large isotopic offset in boundary sections
from South China could have been caused by a change of
facies. Therefore, reliable paleolatitudinal comparison of
813C values can only be achieved if the compared sites are
of similar depositional setting. In this study, we compared
only open marine sections offshore from Pangea. In these
settings, carbon isotopic excursions across the Permian-
Triassic boundary are more pronounced in high latitudes
compared to lower latitudes (Fig. 6). Our preferred

interpretation for the greater isotopic offset and more
depleted values in higher paleolatitudinal settings is the
primary release of isotopically light carbon from high-
latitude clathrate deposits.

During the Late Permian and Early Triassic, marine
clathrate deposits along continental margins and associated
trenches were likely concentrated at high-latitudinal settings
due to increasingly warm temperatures in low and mid
latitudes (Crowley 1994). In the terrestrial environment,
abundant coal deposits in northern and southern high
latitudes of Pangea (Australia, Antarctica, India, Siberia,
North China) attest to the existence of cool-temperate
peatlands, possibly with continuous permafrost (Erwin
1993). Cool boreal paleoclimate might be also indicated by
mid-Permian dropstones and striated pebbles in northern
Angara (Stanley 1984, 1988). Conaghan et al. (1994)
proposed latest Permian permafrost-bearing stringbogs in
the Sydney basin, Australia, and Krull (1999) suggested
evidence for the occurrence of permafrost-bearing palsa
mires in Southern Victoria Land, Antarctica. Thus, conditions
in high-latitudinal terrestrial environments were especially
favourable for the formation of clathrate deposits due to the
possibility of abundant permafrost.

In contrast, the Early Triassic is widely accepted as
having been ice free (Erwin 1993, 1994), significantly
limiting areas of clathrate storage and accumulation. The
marine regression during the Changxingian Stage would
have substantially lowered hydrostatic pressure in shelf
environments and could have promoted clathrate destabi-
lisation and methane release. Additional greenhouse gases
such as CO2 and H2O from the eruption of the Siberian traps
during the latest Changxingian Stage (250 ± 0.2 Ma) may
have furthered paleoclimatic warming (Erwin 1994; Renne
et al. 1995; Bowring et al. 1998). In response to this warming
trend, permafrost in the polar regions could have become
increasingly unstable, resulting in additional release of
methane and CO2, adding to further greenhouse warming
(Krull 1998; Retallack & Krull 1999). Other hypotheses for
global warming include methane destabilisation from
meteorite impact (Bowring et al. 1998). Methane release
from even a small bolide impact in permafrost-bearing high-
latitude peatlands could create wider consequences than the
impact alone (Retallack et al. 1998).

The latitudinal difference in isotopic values can be
explained by the rapid oxidation of methane by methano-
trophic bacteria at the site of primary release in high latitudes.
Oxidation of methane from shelf clathrates within the water
column and from permafrost in the soil environment is
expected to be rapid enough to consume much of the
methane before it can reach the atmosphere (Kvenvolden
pers. com.). This in situ oxidation of methane by methano-
trophic bacteria (Freeman et al. 1990; Hayes 1994) allows
for incorporation of the very negative isotopic signature of
methane in the bacterial organic matter and thus preservation
of the isotopic signal at the site of primary methane release.
Therefore, rather than methane, the oxidation product CO2
is the main carrier of the ' 3C-depleted isotopic signature
away from the site of primary methane release. In areas away
from the primary methane source (i.e., in low latitudes),
isotopic values in carbonate carbon and organic matter would
be expected to be less negative because the isotopic signal
would be recorded indirectly from the atmosphere after
mixing of the isotopically light methane-derived CO2 with
isotopically heavier atmospheric CO2.
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Thus, methane release from permafrost clathrates in high
latitudes could explain both the global carbon isotopic shift
and the more negative carbon isotopic signatures in high
latitudes. Furthermore, methane is a highly effective
greenhouse gas (by a factor of 50-60 by weight compared
to CO2; Nisbet 1989), and strong positive feedback
mechanisms could have amplified subsequent methane
release, resulting in global warming and ice-free conditions
in the Early Triassic.

SYNTHESIS

Stable carbon isotopic data from high-latitude, intermediate
to deep marine sediments from the Permian-Triassic Maitai
strata show a pronounced isotopic shift toward more depleted
values within the Little Ben Sandstone. The previously
unidentified Permian-Triassic boundary in the Maitai Group
can now be placed at or above the formational contact
between the Late Permian Tramway Formation and the Early
Triassic Little Ben Sandstone. The very low 8'3C values of
organic matter in the Little Ben Sandstone suggest
contribution from methane carbon, possibly released from
extensive methane clathrate deposits in high latitudes. This
trend of very 13C-depleted values in high-latitudinal settings
can be found on a global scale. A significant difference in
magnitude of the Permian-Triassic isotopic shift in high
compared to low latitudes, together with very negative
isotopic values, suggests the release of methane from both
shelf and permafrost clathrates, resulting in global warming
and greenhouse conditions of the Early Triassic.
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